DEPARTMENT OF COMPUTER SCIENCE

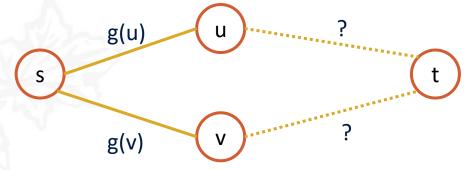
CSCI-564 CONSTRAINT PROCESSING AND HEURISTIC SEARCH

LECTURE 6 - INFORMED SEARCH

Dr. Jean-Alexis Delamer

Recap

- Uninformed search
 - Know the value of one action/edge.
 - No information on the estimated cost to reach the goal.



- Algorithms:
 - Algorithms explore all the nodes.
 - BFS, DFS, Dijkstra, Dynamic programming

Informed search

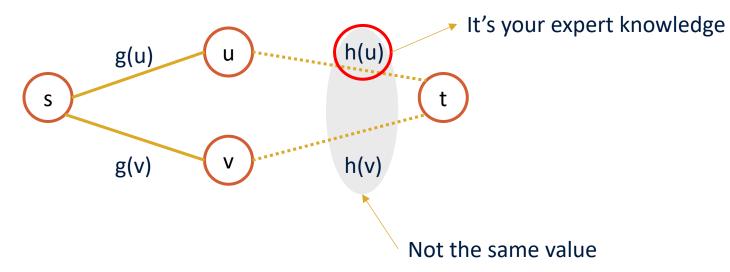
Heuristic search

- An estimate of the remaining distance/cost to reach the goal.
- Use the estimate to prioritize the node expansion.
- It's a way to exploit domain knowledge to prune the search tree.
 - Informed search

STFX

Informed search

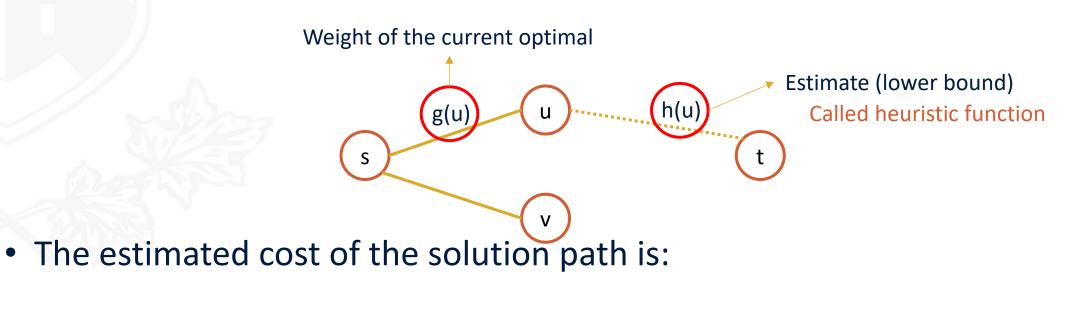
• The estimate of a node u is noted h(u).



Do you know any algorithm that use heuristic search?

StFX

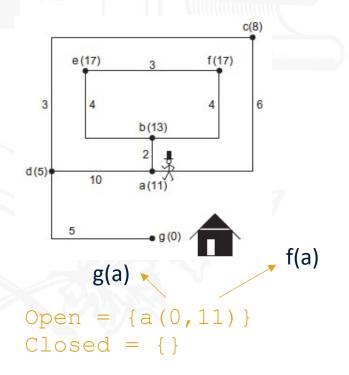
• The most prominent heuristic search algorithm is A*.

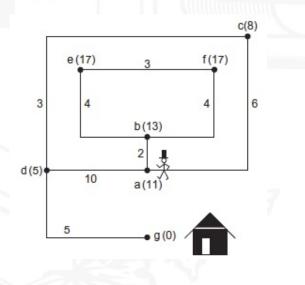


f(u) = g(u) + h(t)

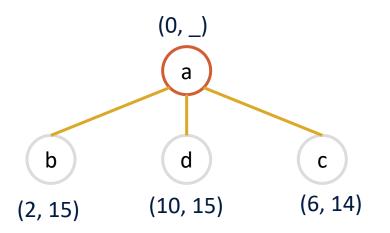
```
Closed \leftarrow \emptyset; Open \leftarrow \{s\}; f(s) \leftarrow h(s)
While (Open \neq \emptyset)
       Remove u from Open with minimum f(u)
       Insert u into Closed
       If u \in T return Path(u)
       Else
              Succ(u) \leftarrow Expand(u)
              Foreach v in Succ(u)
                     If v in Open
                             If q(u) + w(u, v) < q(v)
                                    parent(v) \leftarrow u
                                    f(v) \leftarrow q(u) + w(u, v) + h(v)
                     Else if v in Closed
                             If g(u) + w(u, v) < g(v)
                                    parent(v) \leftarrow u
                                    f(v) \leftarrow q(u) + w(u, v) + h(v)
                                    Remove v from Closed
                                    Insert v in Open
                     Else
```

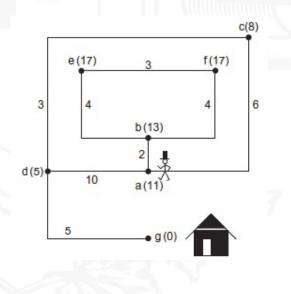
```
parent(v) \leftarrow u
Initialize f(v) \leftarrow g(u)+w(u,v)+h(v)
Insert v in Open
```

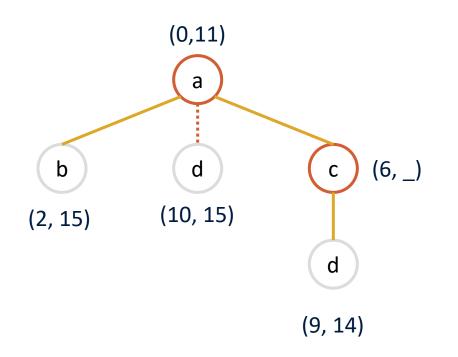


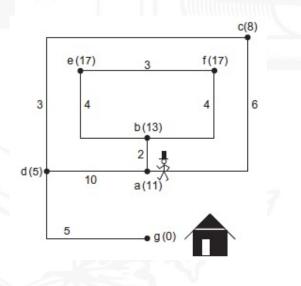
Open = {c(6,14), b(2,15),
 d(10,15)}
Closed = {a}



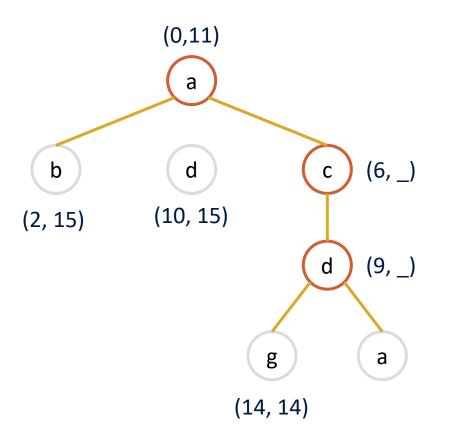


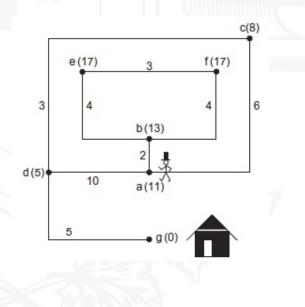
Open = {b(2,15),
 d(9,14) }
Closed = {a, c}



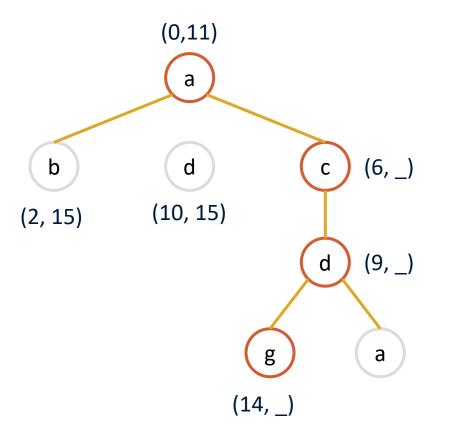


Open = {b(2,15), g(14,14) }
Closed = {a, c, d}



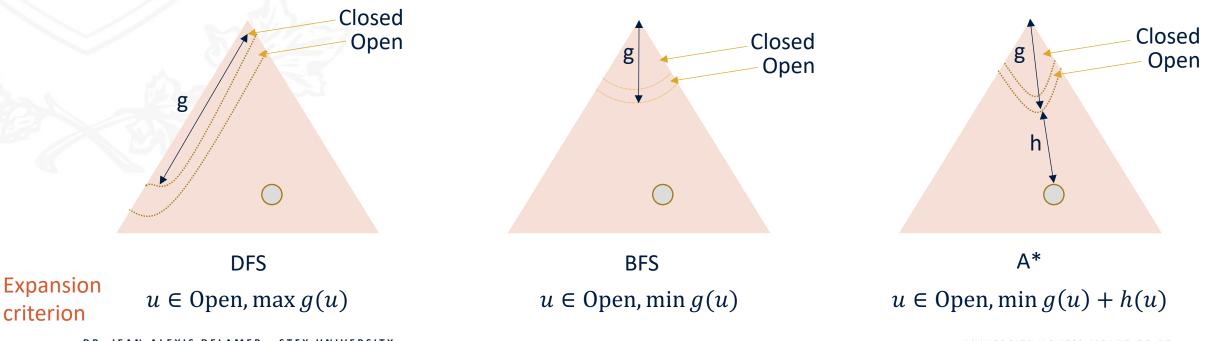


Open = {b(2,15) Closed = {a, c, d, g}



We don't need to visit every nodes (e and f are avoided).

• Difference between A* and other algorithms:



Optimality

StFX

- We often say that A* has optimal efficiency:
 - It gives an optimal solution.
 - Expands the minimal number of nodes.

Is it true?

Optimality

- We often say that A* has optimal efficiency:
 - It gives an optimal solution.
 - Expands the minimal number of nodes.
- It is true for consistent heuristics.
- But not always for admissible heuristics.

StFX

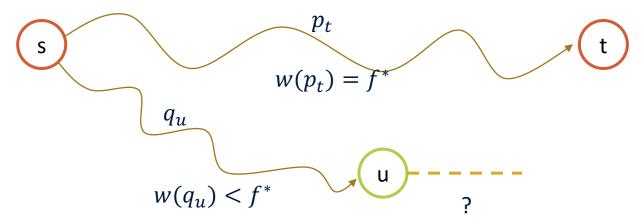
- Definition (Consistent heuristic):
 - A goal estimate h is a consistent heuristic if h(u) ≤ w(u, v) + h(v) for all edges e = (u, v) ∈ E.

Theorem (Efficiency Lower Bound):

• Let G be a problem graph with nonnegative weight function, with initial node s and final node set T, and let $f^* = \delta(s, T)$ be the optimal solution cost. Any optimal algorithm has to visit all $u \in V$ nodes with $\delta(s, u) < f^*$.

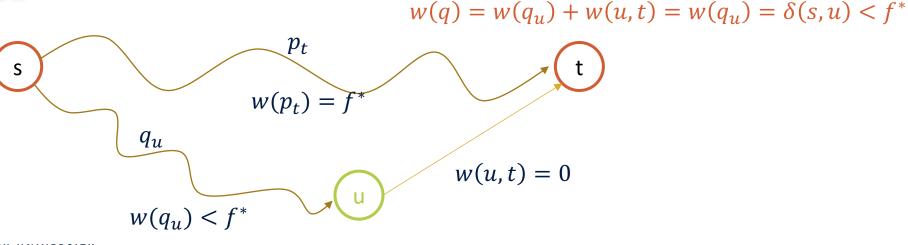
• Theorem (Efficiency Lower Bound):

- Let G be a problem graph with nonnegative weight function, with initial node s and final node set T, and let $f^* = \delta(s, T)$ be the optimal solution cost. Any optimal algorithm has to visit all $u \in V$ nodes with $\delta(s, u) < f^*$.
- Proof:



• Theorem (Efficiency Lower Bound):

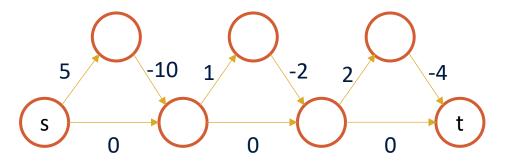
- Let G be a problem graph with nonnegative weight function, with initial node s and final node set T, and let $f^* = \delta(s, T)$ be the optimal solution cost. Any optimal algorithm has to visit all $u \in V$ nodes with $\delta(s, u) < f^*$.
- Proof:



- Definition (Consistent heuristic):
 - A goal estimate h is a consistent heuristic if h(u) ≤ w(u, v) + h(v) for all edges e = (u, v) ∈ E.
- Theorem (Efficiency Lower Bound):
 - Let G be a problem graph with nonnegative weight function, with initial node s and final node set T, and let $f^* = \delta(s, T)$ be the optimal solution cost. Any optimal algorithm has to visit all $u \in V$ nodes with $\delta(s, u) < f^*$.
- The number of nodes that any algorithms expands will have to be larger than or equal to the number of nodes that A* expands.

Admissible heuristics

- Definition (Admissible Heuristic):
 - An estimate h is an admissible heuristic if it is a lower bound for the optimal solution costs; that is, h(s) ≤ δ(s,T) for all s ∈ V.
- If we have admissibility but not consistency, A* will reopen nodes.
- Worse! A* might reopen nodes exponentially many times.
 - This behavior does not appear frequently in practice.



Admissible heuristics

- In these cases, we use other algorithms:
 - Bellman-Ford algorithm, that deal with negative edge costs.
- But A* is not optimal with non consistent heuristics.

A*

- A* can find a shortest path even though it expands every state at most once. It does not need to reexpand states that it has expanded already.
- A* is at least as efficient as every other search algorithm (that has the same heuristic values as A*). They needs to expand at least the states that A* expands.

Exercise

- The Missionary and Cannibals:
 - At one side of a river there are three missionaries and three cannibals.
 - They have a boat that can transport at most two persons. The goal for all persons is to cross the river. The boat requires someone to cross the river.
 - At no time should the number of cannibals exceed the number of missionaries.
- 1. Draw the problem graph and provide its adjacency list representation.
- 2. Solve the problem via DFS and BFS by annotating the graph with numbers.
- 3. Consider a heuristic function that counts the number of people on the other side of the river. Do you observe an inconsistency?